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The synthesis problem of layered bodies is one of the promising directions in the region of structural optimization. A 
number of studies [1-4] is devoted to them, being concerned with design problems of layered heat-protecting panels, 

multilayered wave f'llters, and elastic layered bodies. The structure and its geometric sizes are selected as control parameters 

in synthesis problems of layered structures. The control characterizing the structure of layered bodies is a piecewise-constant 
function with discrete range of values. Therefore, in deriving the control equations constructed by numerical algorithms k is 
necessary to use methods of the theory of optimal control. The structure and sizes of the layered construction are determined 

in the optimization process, though the amount, sizes, and layer materials are not known ahead of time. 

In the present study we consider the synthesis problem of a finite set of  elastic, homogenous, isotropic materials of 
multilayered spherical inclusion of minimum weight, located in a matrix stretched at infmity by a uniform uniaxial force, with 

given restrictions on the inclusion tensile strength and its sizes. The necessary optimization conditions have been obtained, a 
computational algorithm has been constructed, and a calculation example of an optimal inclusion has been provided. 

1. Statement  of  the Problem. Let there exist a set W, consisting of k homogenous, isotropic materials. From it is 
required to synthesize a layered spherical inclusion of minimum weight. 

Let R 1, and R 2 be the interior and exterior surface radii of the inclusion considered (see Fig. 1), located in a matrix 
stretched at infinity by a uniform uniaxial force q. The pressure p is assumed known at the inclusion boundary R 1. The stress- 

strain states of the multilayered inclusion and of the matrix are described in the case of  axial symmetry by the following 

boundary value problem, including the equilibrium equation 

&Jr, 1 d%o I 
0"7" + r ~ + -r (20,, - o00 - o~+ + o,0 ctg 0) = 0, 

dot0 + 1 do0o 1 
o--7- r ~ + -�9 [3o,0 + (o0e - o~)  ctg 0 ] = 0; 

(1.1) 

Hooke's  law 

o i j = 2 G  'Ii--:-.~, (e~bk~)bi~ + ei~], 

where the nonvanishing components of the strain tensor in the spherical coordinate system (r, 0, ,~) are 

and the boundary conditions 

OUr I Otto Ur 
e,, = ~ r  ' eoO = -r " ~  +--r ' 

e.p.p = - -  + clg O, 2r = I 0u, Ot,o uo 
t r r - ~  4 Or r 

(1.2) 

(1.3) 

o,, (R~, 0) = - p ,  o,0 (R~, 0) = 0, (1.4) 

o ,  (~ ,  0) = q cos 2 0, 0,0 (co, 0) = - q  cos 0.sin 0. 
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Here Ur(r, 0), uo(r, 8) are the radial and meridional displacements of  body points, and G(r), v(r) are the distributed medium 

characteristics: the shear moduli and the Poisson coefficients of the inclusion layer materials and of  the matrix. 

At the internal boundaries r i E (R 1 , R 2) of the inclusion layers and at the inclusion-matrix boundary itself, where the 

medium properties undergo a discontinuity, it is required to assign matching conditions: continuity of  displacements u r, u o and 

stresses arr, are, i.e., 
lu, (r,, O) ] = [u+ (r,, 0) ] = lo,, (r,, O) ] = [o,o (r, 0) ] = 0. (1.5) 

Let (r, L, and p. be characteristic quantities, having the dimensions of stress, length, and density. Introduce new 

dimensionless variables (in the following we omit the asterisks of the dimensionless quantities) 

u'~ = u , /L ,  R'~ = R , / L ,  o~ = o ~ o ,  o~ = c~/o, G" = G / o ,  p" = p / o ,  q" = q / o ,  p+ = p /p .  (1.6) 

(at, P are the limiting stress and material density in the set W). We change the coordinates 

r = Rt + x (R2 - R1), x ~ [0, 1 ], (1.7) 

transforming the variable region [R 1, R 2] into the constant [0, 1]. Introduce the piecewise-constant function 

c t (x )={%;  x E  [x~,xi+l ), . /= 1 . . . . .  n}, x l = 0 ,  xn+l= 1, (1.8) 

characterizing the structure of  the multilayered inclusion: the number, sizes, and composing materials of  its layers. The c~j value 

belongs to the discrete finite set 

U = {ctl . . . . .  ct,}, (1.9) 

corresponding to the assigned set of materials W. All the characteristics of materials of  the set W are now functions of the 

distribution c~(x) on the segment [0, 1]. For the set U it is convenient to assign the set of integers U = { 1 . . . . .  k}. The notation 

c~ (x) = i, x E [xj, xj+ t) them implies that the jth spherical layer of  the inclusion consists of  the ith material of  the set W. 

Since the structure of  the layered inclusion is determined by the function e~(x), and the geometry - by its sizes R 1 and 

R 2, we consider the pair {a (x), R1} as control (for definiteness the external radius R 2 is assumed fixed), where o~(x) E U (1.9) 

and 

R~ E [a, b l (1.10) 

(a, b are given limits, in which one can vary the thickness of the inclusion considered). 

The optimal design problem consists of the following. Among the piecewise-constant functions ~(x) (1.8), whose range 

of values belongs to the set U (1.9), and the parameters R 1 of the segment [a, b] (1.10) it is required to find a control {~ (x), 

R1}, achieving a minimum of the weight functional 

R2 1 

F It:, RI] = 4~ f p (ct) r2dr = f ea (x, ~,  R~) dx ,  (1.11) 
R t 0 

for given restrictions on the tensile strength 

(x, 0, u,, u0, o , ,  o,0, c~, Rl) ~< 0. (1.12) 

As a restriction (1.12) we consider the Mises flow condition 

n = (o ,  - 0 , )  2 + (o~ - o+,) 2 + (o~  - 0,.) 2 + 60~ - 207 ~ 0. (1.13) 

z 

Fig. 1 
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Note that inequality (1.13) can be written in terms of  u r, u o, Orr, aro ' using the Hooke law relat ion (1.2).  
2. Necessa ry  O p t i m u m  Condi t ions .  To derive them for the problem (1.1)-(1.13) it is required to construct an 

expression for the variat ional  of  the purpose functional (1.11) and the restrictions (1.13) in terms of  the variat ion of  the control 

{a (x), RI}. With  this purpose we transform the boundary value problem (1.1)-(1.5).  A solution of  p rob lem (1.1)-(1.4) was 

given in [5] for an arbi t rary  homogeneous spherical layer and for a matrix undergoing uniaxial tension by  a force q at infinity. 

In the layer  and in the matr ix  the solution is 

u, (r, B) = u,~ (r) + u,2 (r) cos 20, 

o,, (r, O) = o,L (r) + 0,2 (r) cos 20, 

u0 (r, 9) = u0~ (r) sin 20, 

o,0 (r, 0) = ~ (r) sin 20. 
(2.1) 

The stress-strain state of  a mat r ix  without inclusions, satisfying conditions (1.4) at infinity, is descr ibed by the equations 

At 3A2 5 - 4v,.  A3 q (1 - vm) 
//it -~ 2 4 q r r 3 (1  - 2v,,,) r 2 + 4 G , . ( l  + vm) r ,  

9A 2 5 - 4v m A3 q 
ta,2 = - -  ~ + - -  + 

r 1 - -  2v m r 2 ~ /"1 

6A 2 . 2A 3 q 
/d01 ~ r4  F2 4G m F~ 

o,~ = 4G,,, + r5 3 (I ~ , , , )  + 2"' 

5 - v,,, A_~] q 
c,2 = 4G,,, [! rS--As z f -2 Tv,,, J + - i '  

r ZA 1 + v,,, A3"] q 
I ' l r  " ~ 2  1 - 2 .... ~ ]  2 4G,, 
t. 

(2.2) 

(G  m, v m are the shear modulus and the Poisson coefficient of  the matrix material) .  
The matching conditions (1.5) and relations (1.7), (2.1) make it possbile to to introduce continuous phase variables 

on the segment [0, 1] 

z ( 4  = 0' , , ,  " +  ',o,, o,,, 0,2, ~)'. (2.3) 

Using solution (2.2) for the matrix,  the original boundary value problem (1.1)-(1.4) can now be represented in the form 

of  a boundary value problem in the unknown z (x) (2.3) for the spherical inclusion only: 

z'  (x) = A (x, a ,  & )  z (x), z4 (0) = - t ' ,  zs (0) = z6 (0) = 0, 

z r (1) = B (v,,,, G.,, R2) z, (1) + c (v.,, G.,, g2, q), (2.4) 

where zf (x) = (Zl, z2, z3) T, zt (x) = (z4, Z5, z6) T, while the nonvanishing elements aij, bid, c i of  the matr ices  A ( x ,  ~ ,  Ra), B(v m, 

Gin, R2) and of  the vector  c(v m, G m, R 2, q) are 

2 2v (R2 - gz) 
a ~ z = 2 a t 3 = a 2 2 = ~ a 2 3  = - a 6 s  = . ( , , - 1 )  ' 

I - 2v  I 1 l R2 - R I  
al4 = a2s = 2G ( l  - v) ( R 2  - R t ) ,  ~ a32 = a33 = - a ~  = - ~ a ~  = - ~ a ~  = r ' 

R2 - RI  2 
a36 = G , a41 = 2a43 = a52 = ~ a53 = a62 = 4G I + v R2 - R t  

l - v r 2 

(2 -- 4v) (R 2 - RI) (5 + v) (R 2 - RI) 
a 4 4 = a s s =  rO,-I )  , a63 = 2 G  r2 ( l_~ , )  , 

R2 R2 
d = 8G, (7 - s,,.,) ' b~z = - 4G--~,' bt2 = d (3v,,, - 1), bt3 = d (5 - 7v=), 

3 2 2 = d ( 1 9 % . -  17), b 2 3 = d ( l S - 2 1 v . , ) ,  b 3 2 = d ( l O -  14v..), 

2@d (1 - ,,,,,) c2 = -c3  = 30qd  (1 - %.). b3~ = d (26v., - 22), cl = I + v,,, ' 
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The local restriction (1.13) is replaced by the equivalent integral restriction 
1 

~, tz, ~, R~j-- ~- f I. (..) + I~ (...)I~ ~ -- f . ~  (~, z, ~, R~)~ = o. (2.5) 
v 0 

Here V is the volume of the spherical inclusion, and, due to the evenness of the function 71(...) in the angle 0 over the segment 

[(3, lr], the function ~1(.-.) is 

~ / 2  

qb~ (...) = 2re (R2 - Rx) [R~ + x (R2 - R~) ]2 f {~1 (..-) + ]11 (...) 1} sin 0 dO. 
0 

Note that the functional (2.5) is a Frechet derivative, since the integrand function I ~7 (...) I , being the modulus of the Mises 
flow condition, can vanish in a layered sphere only on a set of measure zero, consisting of a fmite number of points. 

Let now the pair {o~ (x), R I } be the optimum control of the admitted set (1.9), (1.10), minimizing the functional (1.1 1) 
and satisfying restriction (2.5). Consider the perturbed control {a*(x), R 1 + fiR 1} [6] 

. ~g (x), x e D, g (x) e u ,  
(x) = [ ~  (x), x ~ D, 

(2.6) 

(D C [0, 1] is a set of  low measure, mes(D) < e, where e > 0 is a small quantity). Using standard techniques [6], one obtains 
the principal portions of the increment functionals (1.1 1), (2.5), (for brevity we omit the arguments of  the functions referring 

to the unperturbed control {ct (x), R1}): 

5F [... 1 = f { o  (a*, ...) - �9 (a . . . .  )} dx + SSRI, 
D 

~5F1 [... ] = f {M (ct*, ...) - M (a . . . .  )} dx + SIbRI. 
O 

(2.7) 

Here 

M (x, z, ~ ,  a ,  R,) = ~o~ (x, z, a ,  & )  + ~T (x) A (x, a ,  g~) z (x); 
1 1 

fo S= ~ d p ( x ,  a, Rl) dx; SI= M(x, z, 4, a, Rt) dx; 
0 0 

and the vector of matched variables ~b(x) satisfies the boundary value problem 

[" ]" ap'(x) = - A  "(x,  ct, R I ) *  ( x ) -  ~zz'Pl(x' z, a ,  RI) , 

q,,(0) = Lp2(0) = ~ 3 ( 0 )  = 0 ,  xp,(l) + B T(vm, G, , ,R2)~ , , ( I )  = 0. 

(2.8) 

We now construct the expansion functional 

(2.9) 

(hi, ~i 2, are Lagrange multipliers and penalty variables [7]). Using expression (2.7), the variational functional J [ct, R1] (2.9) 

can be represented in the form 

;SJ [... ] = f {H (a . . . .  ) - H (a*, ...)} dx + {S + XlSl -- ~.2 + ~-3} ~R1 + 
D 

+ 2 ( x ~ h ~ ,  + x2~2~2), 
(2.1 o) 

where 
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H (x, z, ~ ,  o~, RL) = - O  (x, ct, RI) - ~.IM (x, z, Xp, c~, Rl). 
(2.11) 

Since the control {tx(x), R1} is optimal (minimal), the condition {~* (x), R 1 + ~Rx} must be satisfied for any admitted 
controls ~J [...] >__ 0. Due to the arbitrariness of the variations 8R 1, 8~i, from expression (2.10) we then obtain the relations 

[7] 

S + k~SI - k2 + ~3 = 0; (2.12) 

k 2 ( a - R l ) = 0 ,  k3(Rt-b)=0,  Xaa'0, ~-3;'0 (2.13) 

and due to the fact that the set of small measure D can be distributed densely almost everywhere on the segment [0, 1], for 
almost all x E [0, 1] the maximum condition must be satisfied for the Hamilton function H(...) (2.11) in the argument ~ [6]: 

H (x, z, ~ ,  a ,  RI) = max H (x, z, xp, ct*, RI). 
(L'(~U 

(2.14) 

We thus obtain that the optimal control {~ (x), R1} and the optimal trajectory corresponding to it z(x), as well as the 
vector of matched variables ~b(x), must satisfy the boundary value problems (2.4), (2.8), the relations and restrictions (1.8)- 
(1.10), (2.5), (2.13), and the optimal conditions (2.12), (2.14). 

3. Computational Algorithm. The basic idea of the direct method of solving optimal design problems consists of 
constructing a sequence of controls {~ (x), R1} j ,  j = 1, 2 . . . . .  minimizing the purpose functional (1.11). For this we introduce 

a uniform grid {xi} by partitioning the segment [0, 1] into n segments Di,  modeling a set of small measure. We assign an initial 
control {a (x), R1} from the admitted range (1.8)-(1.10), (2.5). Obviously, the function ~(x) is piecewise constant with constant 
portions D i = [x i, Xi+l), on which it acquires values from the set U (1.9). The subsequent approximation {~* (x), R 1 + 6R1} 

on some set D i is sought in the form (2.6) 

IcLj, x ~ Di, c~ ~ U, 
~* (x) = [~ (x), x ~ D,; (3.1) 

R~ + 6& ~ [a, hi, IgsR~[ < r (3.2) 

and is determined from the linearized optimal problem: finding on the set D i an admitted perturbation {~j, 6R1}, guaranteeing 
a maximum drop of the functional F[...] or, in different words, minimum variation of 6F[...] (2.7) under conditions (3.1), (3.2) 
and the linearized restriction (2.5) 

Fl [z + 6z, et*, Rl + 6RI] ~ Fl [Z, r Rl]  + ~SFl [Z, ct, R t ]  = 0, (3.3) 

where the expression for 6Fl[...] is given by Eq. (2.7). The given linearized problem is another version of the problem treated 
in Sees. 1, 2. It is hence directly obtained that the optimum perturbation {=j, 6R1} must satisfy the relations 

~ R ~ = - x { S + k t S l - k 2 + k 3 } ,  x~*0; (3.4) 

k 2 ( a - R t - b R x ) = 0 ,  k 3 ( R l + ~ R t - b ) = 0 ,  k2;~0, ~-3;~0 (3.5) 

and restrictions (312), (3.3). 
In the computational process the factors r, 3, 2, k 3 are found from (3.2), (3.5). The best correction ~ (3.1) is 

determined as follows. From relations (3.3), (3.4) one obtains 

8R1 = - { f [ M  ( ~  . . . .  ) - M (c~ . . . .  ) l dx  + Ft [z, a,  R~ ]}/Sx. (3.6) 
oi 
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Minimizing the variation 8F[...] (2.7), the correction c~j is then found from the condition 

f H(x, z, V, ai, R O d x = m a x  f H ( x , z ,  ~, a,, R Odx, 
Di a , E U  D i 

where 

H (x, z, ~,  a . ,  R 0 = -r (x, a.,  R 0 + SM (x, z, ~ ,  a. ,  RO/S1. 

For S 1 = 0 the correction obtained is determined from the relation 

6 R l = - ~ { S - ) , 2 + k 3 } ,  f q ~ ( x , % , R l ) = m i n f ~ ( x , a . , R 1 ) d x  
D i r~,EU D i 

with account of restrictions (3.2), (3.3), (3.5). 

Thus constructing the new control {c~* (x), R 1 + 5R�94 we apply it subsequently to the initial one and construct the 
next approximation. The process is assumed to be Finite on the given partition grid {xi} if the control {~ (x), RI} does not vary 
on any of the sets D i. The solution obtained is a local minimum in the problem considered. 

Example. The set W consists of five materials, having the following mechanical and physical dimensionless 
characteristics (1.6): 

E = 270; 7100; 12000; 21000; 11200, v = 0,27; 0,33; 0,32; 0,3; 0,33, 

p = 0,65; 2,85; 4,6; 7,8; 8,93, oT = 4,5; 44; 80; 120; 20 

(E = 2G(1 + v) is the Young modulus of the material). 

The pressure p = 0 is assigned on the internal surface of the inclusion, whose radius R 1 can vary within the limits 
of the segment [0.7; 0.9]. The external radius R 2 is assumed FLxed and equal to unity. The matrix containing the spherical 

inclusion consists of the first material of the set W and is stretched at infinity by a uniaxial force q = 4. The inclusion region 
is partitioned into 50 portions of equal thickness, modeling the set D i. 

As initial approximation we selected a homogeneous inclusion of the second material with R 1 = 0.7. As a result of 

optimization we obtained a two-layered inclusion with R 1 = 0.8992, weight F. = 3.7 and with layers [0.8992; 0.9234] of the 

third material, [0.9234; 1] of the second material. The lightest homogeneous inclusion, satisfying the restrictions on the tensile 
strength (1.13) and the body width (1.10) for givenp and q, is an inclusion of the second material with R 1 = 0.85295 and F* 

= 4.5299. 

The relative weight advantage for the optimal inclusion in comparison with the given homogeneous one was (1 - 
F./F*).100% = 18.3%. 

This work was supported by the grants 2-41-7-26 MNVSh and TP. 
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